By Heather Pfrunder, M.A.Ed SDC Teacher and Education Specialist
November 27, 2021
I can attribute my learned affection for math to the teaching formula of Eureka math: concrete objects, visual models, then representative diagrams. Somehow in the vertical alignment of visual aids, math ceased to be a rote memorization of steps and procedures to fun puzzles to be solved. However, I quickly found that beyond the steps of number sense for my students 100% of them stumbled to understand what to do once it came time to apply the concepts in real-world scenarios (i.e. word problems). We would go confidently from adding using 1:1 correspondence and manipulatives, to count-on strategies, to simple algorithms, and then crash into a halted stop once it came time to apply them. Logically, the Read, Draw, Write of what we had been doing all along should have worked - but it didn’t. We would pull out the Eureka Math workbooks and would never get past guided practice: doe-eyed, my students would wait for me to explain the vocabulary, where to find it, and what to do with it. I was waiting for the flicker of recognition, a spark of partial understanding that would never come - or at least never come until I adjusted my strategies. Thus it came to be, I, the lover of the written word, came to research and write my Master’s Thesis on my lesser love: Math.
What I learned was a strategy to address the specific challenge of many of our students with language delays. It is also the challenge that faces many of our English Language Learners. The beautiful thing about this strategy is that it nestles quite nicely within the framework of Read, Draw, Write. By using schema-based instruction (instruction to develop metacognition for the development of problem-solving skills through the use of mnemonics and/or visual aids/charts), my students were able to have real and lasting results. Enter the development of my RUNNS strategy: Read, Underline, Number picture, Number sentence, Solve. While I can’t lay claim to the original idea by Rockwell, Griffin, and Jones (“RUNS… (1) Read the problem, (2) Use a diagram, (3) Number sentence, and (4) State the answer” (p. 90) , I can say that via formative assessments I found my adjustment to be far more effective with my students.
Here is how:
While the acronym may seem pretty self-explanatory,
there are a few tricks to it that really make it work.
R - Read. Read as in 1st read in its entirety and a 2nd read for specific chunking of info/close reading.
U - Underline. Underline numbers and “special words” (i.e. "fewer, more than, each, groups, ect…") And most importantly, underline “the ASK.” What is the question? What are the key words there? To know what to underline is the trick to this step. For this I use AVID column notes for students to reference. They find the “math words” then match them to their chart with a dry-erase marker. By doing so, they are able to identify the function.
While the original note/visual was shared with me from another teacher,
I found that I needed to add more to it to be reflective of
the Eureka Math questions - thus the unofficial 3rd column.
N - Number Picture. For this I usually like to set up expectations. It takes a while for my students to remember just what is a number bond, a tape diagram, or an array. Knowing which picture to use can be even more challenging. Typically, Eureka Math highlights a specific pictorial strategy in the lesson set. Front loading students to understand the expectation is key in helping struggling and/or unique learners.
In this anchor chart I even gave examples of the Eureka Math verbiage for my
students that require more direct examples.
N- Number Sentence. Here we put it into place: what quantities (or use simplified verbiage to restate vocabulary “numbers”) what function do we put into place. Tip: Vertically align the number sentence and label. This makes the last step so much easier and keeps the train of thought connected to the word problem looking to be solved.
Numbers with their labels to make a vertical number sentence.
S - Solve. For this we double check, “Did we answer the ‘ASK’?” This means making sure we have the written label. I like to have students box their final answer - especially if there is a lot of work on the page.
And Solved it! The answer is in a full sentence and boxed.
Whether you are struggling with a unique learner or trying to overcome sluggish student progress, this may be the solution. Through the RUNNS strategy multiple challenges are addressed: breaking down of the “ASK” to solve, identifying key math vocabulary and their meaning, recognizing types of visuals, and putting it all together. Like all good visual strategies, over time they needed to be faded back. The beauty of this math strategy is that with repeated practice, students should be able to recall the specific strategy long after their graphic organizers are tucked away. I’d love to hear if you are running to win with RUNNS!
Common Core RUNNS Resource: Common Core Math Tools
Like what you read? Join me in upcoming blog posts where I continue to put these strategies into place and share resources!
Rockwell, S., Griffin, C., & Jones, H. (2001). Schema-based strategy instruction in mathematics and the word problem-solving performance of a student with autism. Focus on autism and other developmental disabilities. 26(2) 87-95. Doi: 10.1177/1088357611405039.
No comments:
Post a Comment